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Abstract—
The success of any diagnosis strategy critically depends on

the sensors measuring process variables. This paper presents
a detection and diagnosis sensor faults method based on a
Bottleneck Neural Network (BNN). The BNN approach is used as
a statistical process control tool for drinking water distribution
systems (DWDS) to detect and isolate the sensor faults. This
method is validated in simulation on a nonlinear system: a
quadruple tank and an actual drinking water distribution system.
Several results are presented.

I. I NTRODUCTION

Currently, the meaning advances in process sensing
technologies make it possible to collect enormous amounts
of measured data. However, the valuable information about
the state of the process is rarely used in an optimal way. A
common reason for this inefficient handling of the process
measurements is a difficulty of the information processing.
Thus, it is urgent to develop an effective methodology to fully
accommodate and utilize the automated in-process sensing
devices to withdraw all quality-related diagnostic information.
Modern model-based condition monitoring capitalizes on
the principle of information redundancy. In fact, abnormal
states can be detected by a consistency checking between an
observed behavior as indicated by sensors and an expected
behavior provided by mathematical models.
The models may be explicit, obtained from first principles or
system identification [9], or implicit, obtained by principle
component transformation [11]. For fault isolation, some
structured residuals, which respond to subsets of faults [8],
may be generated by algebraic transformation or by direct
techniques. In the principal component framework, the direct
computation involves structured partial principal component
models [5]. Alternative fault isolation techniques, in the
PCA framework, involve contribution charts [11], statistical
measures [14] and the sensor validity index [7].
Over the last decade, the application of statistical methodology
in process monitoring referred as multivariate statistical
process control (MSPC) has been used as a tool in the control
and improvement of manufacturing processes in a wide range
of industries. MSPC aims to remove the redundancy often
observed in the recorded variables by defining a reduced set
of artificial variables. PCA is one of the most widely applied

MSPC techniques. More precisely. Then fault detection and
diagnosis (FDD) is accomplished in the low-dimensional
space by monitoring the sum of prediction error (SPE)
and principal component scores charts [11]. According to
the principle of PCA, the loading plot can provide the
relationship between the original variables, which can be
utilized to identify faults because most malfunctions may
destroy the relationships between process variables.

Unfortunately, if the process exhibits multiple operating
regimes, the application of conventional PCA gives an
excessive number of false alarms or alternatively, missed
detection of processes faults, which significantly compromises
the reliability of the monitoring system. Nonlinear extensions
have been reported by [10] using principal curves, Kramer
[12] using auto associative neural networks, Qin and McAvoy
[13] using an embedded neural networks into the framework
of partial least squares (PLS). Webb [15] and Wilson [16]
proposed a nonlinear extension of PCA using radially
symmetric kernel functions, and radial basis function (RBF)
networks, respectively. Recently, the sequential data analysis
methods such as dynamic time warping (DTW) and hidden
Markov models (HMM) have been developed for FDD.
Empirical models like neural networks and fuzzy logic
have been also proposed. However, for analysing nonlinear
systems, Kramer [12] suggested to use an auto-associative
neural network to perform a nonlinear data reduction similar
to PCA.
Global demand for water is continuously due to population
growth, industrial development, and improvements of
economic conditions, while accessible source keep decreasing
in number and capacity, moreover, the applications involving
manipulation and transport of water demand high power
consumption. The optimal use of such water supply networks
seems to be the best solution for the present and thus it
is necessary to carefully operate water distribution transfer
[1]. The objective of this research is the contribution in
supervising a water distribution network systems using the
Neural Network diagnosis method.

This paper is organized as follows. In section II, the
Bottleneck Neural Network is developed in more details.
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In section III, the quadruple tank process is described and
a simulation case study using an actual water distribution
network is performed. the results are discussed in section IV.
Finally, some concluding remarks as well as some possible
improvements are given in section V.

II. T HE CONCEPT OFBOTTLENECK NEURAL NETWORK

Bottleneck Neural Network (BNN) is used to identify and
remove correlations between variables as an aid to dimension-
ality reduction, visualization, and exploratory data analysis.
BNN uncovers both linear and nonlinear correlations, without
restriction on the character of the nonlinearities presentin
the data. The neural network used contains five layers: input
layer, mapping layer, bottleneck layer, de-mapping layer and
output layer [2]. These neural networks are a special class of
artificial neural networks which are able to learn the principal
components without explicitly solving the eigenvalues and
eigenvectors from the sample covariance matrix [3] . The
objective function used to train this neural network is:

E =
1
n

n

∑
i=1

‖ei‖
2 (1)

Whereei =xi +x̂i the reconstruction error [4].
An auto-associative neural network is a special case of a
bottleneck neural network (BNN) in which the output is an
estimation of the input, figure 1. Between the input layerxi

and the output layer ˆxi there are three layers of hidden neurons
(the 1st , 2nd and 3rd layers). The 2nd layer is the bottleneck u
giving the nonlinear principal component. The 1st one is called
the encoding layer the 3rd is the decoding layer, each with m
hidden neurones. The encoding layer, represented byG , the
activation functionf1 maps from the inputx to the encoding
layer,

Gk= f1
((

V (x)X +b(x)
)

k

)

(2)

WhereV (x) is an m×n weight matrix,b(x), a column vector
of length m contaning the offset parameters, and k=1,...,m.
A second activation functionf2 maps from the encoding to
the bottleneck layer, which represents the nonlinear principal
component u,

u= f2
(

v(x).G + b̄(x)
)

(3)

The activation functionf3 maps from u to the decoding layer
F ,

Fk = f3
((

v(u)u+b(u)
)

k

)

(4)

The 4th function is mapping fromF to the output vector ˆxi,

x̂i= f4
((

V (u)
F + b̄(u)

)

i

)

(5)

The objective function E is minimised by finding the optimal
values ofV (x), b(x), v(x), b̄(x), v(u), b(u), V (u) and b̄(u). The
BNN was implemented using the hyperbolic tangent function
for f1 and f3, the identity function forf2 and f4, So

u = v(x).Gk + b̄(x) (6)

x̂i =
(

V (u)F + b̄(u)
)

i
(7)

Figure 1. Nonlinear PCA neuronal architecture

A. Fault detection

Sensor fault detection using BNN is performed by moni-
toring the residuals. The Squared Prediction Error (SPE) isa
statistic that measures the lack of fit of the BNN model. At
time k, the detection index SPE is given by:

SPE(k) = eT (k)e(k) =
m

∑
i=1

e2
i (k) (8)

The SPE statistic distribution can be well approximated by

SPE ∝ gX
2

h (9)

Where the weightg and the degree of freedomh can be
estimated by the matching moments of the mean (m) and
variance (v) of the cumulants [6] :

g =
v

2m
(10)

and

h =
2m2

v
(11)

The resulting upper control limit can thus be calculated as

δα =
v

2m
X

2
1−α

(

2m2

v

)

(12)

Whereα is the predefined level of significance.

An abnormal situation exists when:

SPE(k)> δ 2
α (13)

Whereδ 2
α is a confidence limit for SPE estimated using the

historical data.
In order to improve the detection we can apply the filter
exponentially weighted moving average (EWMA), to reduce
the rate of false alarms due to the noise. The generalEWMA
expression for residual is:
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ē(k) = (I −β ) ē(k−1)+βe(k) (14)

SPE(k) = ‖ē(k)‖2 (15)

Where β = γI denotes a diagonal matrix whose diagonal
elementsγ are forgetting factors for the residuals.

III. R ESULTS AND DISCUSSIONS

A. Quadruple tank benchmark

The BNN method has been carried out in simulation on a
benchmark: the quadruple-tank process.
The quadruple tank laboratory process, was originally pre-
sented in [17] The process consists of four interconnected
water tanks, two pumps, and associated valves; where the
water from the two upper tanks flows into the two lower
tanks. A pump is used to pour water into the upper left
tank and the lower right tank. A valve width fixed position
is used to allocate pump capacity to the upper and lower tank
respectively. A second pump is used to pour water into the
upper right tank and lower left tank. See figure 2.

Figure 2. A schematic picture of the quadruple tank process

The control variables are the pump voltagesu1 andu2. Let
the states of the system be defined by the water levels of
the tanks (expressed in cm)x1, x2, x3 and x4 respectively. The
maximum level of each tank is 20 cm. The dynamics of the
system is given by:

ẋ1 =−
a1

A 2

√

2gx1+
a3

A 1

√

2gx3+
γ1k1

A1
u1 (16)

ẋ2 =−
a2

A 2

√

2gx2+
a4

A 2
1
√

2gx4+
γ2k2

A2
u2 (17)

ẋ3 =−
a3

A 3

√

2gx3+
(1− γ2)

A3
k2u2 (18)

ẋ4 =−
a4

A 4

√

2gx4+
(1− γ1)

A4
k1u1 (19)

Where the parametersγi determine the positions of the
valves which control the flow rate to upper and lower tanks
respectively. The parametersAi and theai represent the cross
section area of the tanks and the holes respectively. The control
signals are given by theui. The objective is to control the levels
of the two lower tanks,i.e.x1 andx2 . Numerical values of the
parameters are given in Table I. The control of the quadruple-
tank process is studied at an operating point. The parameter
values are given in Table II.

Parameters Values Unit
A1,A2 28 cm2

A3,A4 232 cm2

a1, a2 0.071 cm2

a3 , a4 0.057 cm2

k1,k2 3.33,3.35 cm3/V s
kc 0.50 V/cm
g 981 cm/s2

Table I
PARAMETER VALUES OF THE QUADRUPLE-TANK

Parameters Values Unit
x0

1,x0
2 12.4,12.7 cm

x0
3,x0

4 1.8,1.4 cm
u0

1,u0
2 3.00,3.00 v

γ1,γ2 0.70,0.60

Table II
OPERATING POINTS PARAMETERS

B. The drinking water distribution system

To illustrate the BNN method on an actual water distribution
network, the network in figure 3 is used as a case study.
This network is constituted of stations of pumping, a dam in
cascade and three tanks. In principal, the pressure, the debit
and the velocity provided by each of the tanks are supervised.

Let: P1(t), P2(t), P3(t): The pressure of water coming out
of every tank.

q1(t), q2(t), q3(t): The flow of water provided by tanks.

V1(t),V2(t),V3(t): The velocity of each of the reservoires
to supervise.

Therfore, the input data are: X=[P1 q1 V1 P2 q2 V2 P3 q3 V3]
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Figure 3. The water distibution network under study

IV. RESULTS

We strictly concentrated on sensor faults. The BNN
approach is based on an auto-associative Neural Network
model with five layers. The detection of the fault sensor in
the quadruple tank is carried out using the Squared Prediction
Error (SPE), the figure 4 allows to detect the presence of
a variation of SPE from the beginning to the end of the
simulation. The evolution plot of the SPE in figure 5 (a)
shows two operating regions, the second one which begins
from the 50th sample to the end of the simulation presents a
fault. The localization of the faulty variable is depicted in the
figure 5 (b) where the contribution plots of the first variable
(which represents the water level of the the first lower tank)
is higher than the other contributions.
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Figure 4. SPE normal case

Now, To illustrate the BNN method on an actual water
distribution network, we use the network in figure 3 as a case
study. This network is constituted of stations of pumping, a
dam in cascade and three tanks. In principal, the pressure,
the flow and the velocity provided by each of the tanks are
supervised. After elaborating the hydraulic model and during
the simulation, we inject a fault from the 30th sample to the
end of the simulation, figure 7 (a) shows the SPE statistical
behavior of the process variables with an offset from the 30th

sample to the end of the simulation. To determine the root
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Figure 5. (a)The statistical SPE of the global PCA for the abnormal state.
(b)The contribution of the variables

cause of the fault, we check out the contribution of each
variables see figure 7 (b), so we can say that the water’s debit
sensor presents a default from the 30th until the end of the
simulation.
The simulation’s results show how the BNN approach is used
for the detection of flows, according to the statistical SPE and
while localization using the contribution plots.
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Figure 6. SPE normal case
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Figure 7. (a)The statistical SPE of the global PCA for the abnormal state.
(b)The contribution of the variables

V. CONCLUSION

This paper presents a detection method for systems with a
nonlinear behavior. We propose in this study a contribution,
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to replace the linear PCA model with a Bottleneck Neural
Network (BNN) in order to adapt this diagnostic method
to the nonlinear systems. The results are satisfactory. To
through the application of a quadruple tank process, we show
the possibility of detecting a default of the sensor and the
possibility of the method’s application on an actual water
distribution system.
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